Thalassemia is an inherited blood disorder that causes the body to produce less hemoglobin than normal. Hemoglobin is the protein in red blood cells that helps them carry oxygen from the lungs to all parts of the body. When this protein is lacking, red blood cells cannot carry out their function properly, leading to mild or severe anemia.
The severity of thalassemia depends on the type. Children with transfusion-dependent thalassemia require blood transfusions throughout their lives. In addition, they need ongoing chelation therapy to remove the excess iron that builds up in the blood from these transfusions. Milder forms of thalassemia, including thalassemia intermedia and thalassemia minor, may require less aggressive treatment or no treatment at all.
Thalassemia is classified based on the severity of symptoms, the need for transfusions, and the type of genetic defect causing the disease. Genetic abnormalities may affect one more genes that produce hemoglobin’s components: two alpha-globin proteins and two beta-globin proteins.
Children with thalassemia minor or “thalassemia trait” have two alpha-globin genes or one beta-globin gene missing or damaged, while those who are “silent carriers” have a single missing or damaged alpha-globin gene. These children do not experience symptoms (except mild anemia in some cases of thalassemia minor) and they do not require treatment.
In children with non-transfusion dependent thalassemia, one or both beta-globin genes are not working properly. They may have mild to severe anemia and sometimes are not diagnosed until later in life. They may need only intermittent blood transfusions during stress or illness, but some will eventually need to start a regular transfusion regimen to prevent complications.
Children with transfusion-dependent thalassemia need ongoing medical care, including blood transfusions to alleviate severe anemia and chelation therapy to remove excess iron from the blood. There are two subtypes of TDT:
The defective genes that cause thalassemia are relatively common, especially in people of Southeast Asian, South Asian, Middle Eastern, African, and Mediterranean descent. However, thalassemia occurs in many populations around the world.
About 300 million people around the world have the “thalassemia trait,” which puts them at risk of having children with some form of thalassemia. More than 1 million people have non-transfusion-dependent thalassemia, while more than 100,000 people have transfusion-dependent thalassemia. In the United States, there are at least 1,200 people with transfusion-dependent thalassemia.
Symptoms of thalassemia depend on the severity of the disease and how it is treated. Each child may experience symptoms differently. Patients with thalassemia trait generally do not experience any symptoms.
The main signs and symptoms of TDT in infancy, before diagnosis and treatment, are severe anemia as well as symptoms caused by overproduction of immature, defective red blood cells. This overproduction can weaken the bones, leading to fractures and facial deformity, and cause enlargement of the spleen and liver.
Patients with TDT do not typically experience severe anemia once they have started receiving regular transfusions. Without these transfusions, however, they can develop life-threatening anemia.
Later in childhood and adulthood, TDT symptoms are generally the result of iron overload, a byproduct of the frequent blood transfusions patients require. Symptoms of iron overload may include:
In general, children with non-transfusion-dependent thalassemia experience less severe symptoms. They need regular medical follow-up, but may not require frequent blood transfusions until later in life. The most common symptoms of NTDT are related to anemia and overproduction of immature, defective red blood cells. To avoid these symptoms, a transfusion regimen is often recommended.
Symptoms may include:
Thalassemia is caused by an abnormality or mutation in DNA that affects the genes responsible for hemoglobin production. Hemoglobin is made up of four parts: two alpha-globin proteins and two beta-globin proteins. Thalassemia is caused by abnormalities in one or more of the genes that produce these proteins.
Children inherit thalassemia from their parents. When one parent is a carrier for thalassemia, a child may develop a mild form of the condition called thalassemia minor, also called “thalassemia trait.” When both parents are carriers of thalassemia, there is a greater chance their child or children will inherit a more serious form of the condition.
A diagnosis of thalassemia is made after tests to discover which type of thalassemia a child might have. Those tests include:
Once thalassemia is diagnosed in a child, treatment may involve many specialists, including specialists in hematology and transfusion medicine as well as cardiologists, endocrinologists, gastroenterologists, nephrologists, audiologists, ophthalmologists, infectious disease specialists, geneticists, and genetic counselors as necessary.
Treatment for thalassemia depends on its severity. If your child has transfusion-dependent thalassemia (TDT), they will require life-long, ongoing medical care, which may include:
Two FDA-approved gene therapies are now available at Boston Children’s for patients with beta thalassemia who require regular transfusions of red blood cells. Both treatments involve collecting blood-forming stem cells from the patient’s blood and manipulating them genetically in a specialized lab. However, the cells are treated in different ways.
Before receiving their genetically modified cells, patients receive several days of chemotherapy to eliminate the disease-causing stem cells in their bone marrow and allow room for the new stem cells to grow. The treated stem cells are then infused intravenously, similar to a standard blood transfusion.
Boston Children’s has extensive experience with gene therapies. To inquire or to refer a patient, email gene.therapy@childrens.harvard.edu.
In the past, children with transfusion-dependent thalassemia had a significantly reduced life expectancy. Today, however, thanks to blood transfusion therapy and effective iron chelators, the life expectancy for children with severe thalassemia is constantly improving. Survival to older adulthood was once rare but should now be expected. With a gene therapy now available, fewer patients may need to have frequent transfusions.
At the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center's Thalassemia Program, our experts provide diagnostic testing and comprehensive care for children and adults with all forms of thalassemia. For many appointments and certain procedures, your child also can receive care at one of our satellite offices. Treatment for thalassemia depends on the subtype of the disorder, but may include: