Before surgery, the system’s preoperative planning software helps the surgical team determine the size and type of spinal instrumentation best suited to a child’s individual anatomy. The software also provides anatomical images to help surgeons fully understand their patient’s anatomy before they enter the operating room. This detailed knowledge is particularly helpful when a child is very small or has a severe a deformity that may affect the angle of the vertebrae in unpredictable ways.
During surgery, as the surgeon attaches hardware to the spine, an automated robotic arm guides the trajectory of screw placement, minimizing any misplacement of screws and preventing surgical harm. Throughout the procedure, the system provides real-time imaging of the spine so the surgeon can verify the exact placement of each implant, providing another layer of safety.
Robotic surgery holds the promise of improving surgical accuracy of placing spinal instrumentation in children. This accuracy could lead to an eventual decrease in surgical complications and ultimately improve the safety of pediatric spinal deformity surgeries.