These studies include:
‘Living’ airway models of cystic fibrosis
Using blood cells from people with CF, our researchers have constructed model airways that contain all the key cell types lining the trachea and bronchi. These “organoids” can be used to study how infections like COVID-19, flu, and Pseudomonas aeruginosa affect the airways of people with CF, without the need for invasive tissue sampling, and how the effects change when the CFTR gene is edited. The model can also be used to test different treatments.
Studies of ionocytes
Ionocytes make up less than 1 percent of the cells lining the respiratory tract, yet they produce more than 90 percent of the CFTR protein. For the first time, our researchers have been able to generate ionocytes from the blood cells of patients with CF, first converting them into lung stem cells and then directing the stem cells to form ionocytes. Our team is studying these cells to understand what role they play in the respiratory tract, and whether targeting them would be effective way to treat CF.
Understanding ‘extreme phenotypes’ of cystic fibrosis
Some people with CF have preserved lung function into their 60s and 70s, while others need lung transplants at a young age — yet all have the CFTR mutation. A research team is using genetics and stem cell models to understand if there are genes that modify the effects of CFTR in these CF “outliers.” They hope to get insights that will lead to new treatments.
Cell therapies for cystic fibrosis
Another team at Boston Children’s is exploring cell therapy as a way to rehabilitate damaged lung tissue without the need for lung transplant, by introducing healthy, genetically edited lung stem cells created from patients’ own cells. So far, this general approach shows signs of working in a mouse model.